skip to main content


Search for: All records

Creators/Authors contains: "Magnoli, Susan M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Island biogeography has classically focused on abiotic drivers of species distributions. However, recent work has highlighted the importance of mutualistic biotic interactions in structuring island floras. The limited occurrence of specialist pollinators and mycorrhizal fungi have been found to restrict plant colonization on oceanic islands. Another important mutualistic association occurs between nearly 15,000 plant species and nitrogen-fixing (N-fixing) bacteria. Here, we look for evidence that N-fixing bacteria limit establishment of plants that associate with them. Globally, we find that plants associating with N-fixing bacteria are disproportionately underrepresented on islands, with a 22% decline. Further, the probability of N-fixing plants occurring on islands decreases with island isolation and, where present, the proportion of N-fixing plant species decreases with distance for large, but not small islands. These findings suggest that N-fixing bacteria serve as a filter to plant establishment on islands, altering global plant biogeography, with implications for ecosystem development and introduction risks. 
    more » « less
  2. Abstract

    Symbiont diversity can have large effects on plant growth but the mechanisms generating this relationship remain opaque. We identify three potential mechanisms underlying symbiont diversity–plant productivity relationships: provisioning with complementary resources, differential impact of symbionts of varying quality and interference between symbionts. We connect these mechanisms to descriptive representations of plant responses to symbiont diversity, develop analytical tests differentiating these patterns and test them using meta‐analysis. We find generally positive symbiont diversity–plant productivity relationships, with relationship strength varying with symbiont type. Inoculation with symbionts from different guilds (e.g. mycorrhizal fungi and rhizobia) yields strongly positive relationships, consistent with complementary benefits from functionally distinct symbionts. In contrast, inoculation with symbionts from the same guild yields weak relationships, with co‐inoculation not consistently generating greater growth than the best individual symbiont, consistent with sampling effects. The statistical approaches we outline, along with our conceptual framework, can be used to further explore plant productivity and community responses to symbiont diversity, and we identify critical needs for additional research to explore context dependency in these relationships.

     
    more » « less
  3. Abstract

    In nature, plant species simultaneously interact with many different mutualistic partners. These mutualists may influence one another through direct interference or indirectly by competing for shared reward resources or through alteration of plant traits. Together, these mutualists also may combine to affect plant hosts in ways that may not be predictable based on pairwise interactions. Given that the outcome of mutualistic interactions often depends on environmental conditions, multi‐mutualist effects on one another, and their plant hosts may be affected by global changes. Here, we grew focal plants under simulated global warming conditions and manipulated the presence of partner mutualists to test how warming affects the outcome of interactions between focal plants and their partners (nitrogen‐fixing rhizobia, ant defenders, and pollinators) and interactions among these partner mutualists. We find that warming alters the fitness benefits plants receive from rhizobium resource mutualists but not ant mutualists and that warming altered plant investment in all mutualists. We also find that mutualist partners interact, often by altering the availability of plant‐produced rewards that facilitate interactions with other partners. Our work illustrates that global changes may affect some but not all mutualisms, often asymmetrically (e.g., affecting investment in the mutualist partner but not plant host benefits) and also highlights the ubiquity of interactions between the multiple mutualists associating with a shared host.

     
    more » « less
  4. Adaptation drives the diversity of form and function observed in nature and is key to population persistence. Yet, adaptation can be limited by a lack of genetic variation, trade-offs, small population size, and constraints imposed by coevolving interacting species. These limits may be particularly important to the colonizing populations in restored ecosystems, such as native prairies restored through seed sowing. Here, we discuss how constraints to adaptation are likely to play out in restored prairie ecosystems and how management decisions, such as seed mix composition, prescribed fire, and strategic site selection, might be used to overcome some of these constraints. Although data are still limited, recent work suggests that restored prairie populations likely face strong selection and that promoting the potential for adaptation in these systems may be necessary for restoring populations both now and in the face of further global change. 
    more » « less
  5. Abstract

    When populations colonize new habitats, they are likely to experience novel environmental conditions, and as a consequence may experience strong selection. While selection and the resulting evolutionary responses may have important implications for establishment success in colonizing populations, few studies have estimated selection in such scenarios. Here we examined evidence of selection in recently established plant populations in two prairie restorations in close proximity (<15 km apart) using two approaches: (1) we tested for evidence of past selection on a suite of traits in twoChamaecrista fasciculatapopulations by comparing the restored populations to each other and their shared source population in common gardens to quantify evolutionary responses and (2) we measured selection in the field. We found evidence of past selection on flowering time, specific leaf area, and root nodule production in one of the populations, but detected contemporary selection on only one trait (plant height). Our findings demonstrate that while selection can occur in colonizing populations, resulting in significant trait differences between restored populations in fewer than six generations, evolutionary responses differ across even nearby populations sown with the same source population. Because contemporary measures of selection differed from evolutionary responses to past selection, our findings also suggest that selection likely differs over the early stages of succession that characterize young prairies.

     
    more » « less
  6. Abstract

    When plants colonize new habitats, the novel interactions they form with new mutualists or enemies can immediately affect plant performance. These novel interactions also may provoke rapid evolutionary responses and can be ideal scenarios for investigating how species interactions influence plant evolution.

    To explore how mutualists influence the evolution of colonizing plant populations, we capitalized on an experiment in which two former agricultural fields were seeded with identical prairie seed mixes in 2010. Six years later, we compared how populations of the legumeChamaecrista fasciculatafrom these sites and their original (shared) source population responded to nitrogen‐fixing rhizobia from the restoration sites in a greenhouse reciprocal cross‐inoculation experiment.

    We found that the two populations differed both from their original source population and from each other in the benefits they derive from rhizobia, and that one population has evolved reduced allocation to rhizobia (i.e. forms fewer rhizobium‐housing nodules).

    Synthesis. Our results suggest that these plant populations have evolved different ways of interacting with rhizobia, potentially in response to differences in rhizobium quality between sites. Our study illustrates how microbial mutualists may shape plant evolution in new environments and highlights how variation in microbial mutualists potentially may select for different evolutionary strategies in plant hosts.

     
    more » « less
  7. Summary

    Many plant species simultaneously interact with multiple symbionts, which can, but do not always, generate synergistic benefits for their host. We ask if plant life history (i.e. annual vs perennial) can play an important role in the outcomes of the tripartite symbiosis of legumes, arbuscular mycorrhizal fungi (AMF), and rhizobia.

    We performed a meta‐analysis of 88 studies examining outcomes of legume–AMF–rhizobia interactions on plant and microbial growth.

    Perennial legumes associating with AMF and rhizobia grew larger than expected based on their response to either symbiont alone (i.e. their response to co‐inoculation was synergistic). By contrast, annual legume growth with co‐inoculation did not differ from additive expectations. AMF and rhizobia differentially increased phosphorus (P) and nitrogen (N) tissue concentration. Rhizobium nodulation increased with mycorrhizal fungi inoculation, but mycorrhizal fungi colonization did not increase with rhizobium inoculation. Microbial responses to co‐infection were significantly correlated with synergisms in plant growth.

    Our work supports a balanced plant stoichiometry mechanism for synergistic benefits. We find that synergisms are in part driven by reinvestment in complementary symbionts, and that time‐lags in realizing benefits of reinvestment may limit synergisms in annuals. Optimization of microbiome composition to maximize synergisms may be critical to productivity, particularly for perennial legumes.

     
    more » « less